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Abstract. The calculation of band structure and total energy of solids involves the search for 
the few lowest ( M )  eigenvectors and eigenvalues of large matrices (size N X N). Standard 
algorithms which diagonalise the matrix entirely scale as N 3 ,  while procedures for extracting 
only a subset of M eigenvalues and eigenvectors scale as M N 2 .  Two methods are described 
which aim at finding the lowest eigenvalues and corresponding eigenvectors of a non-local 
pseudopotential Hamiltonian. Both approaches lead to an algorithm which scales roughly 
as MNJI3. 

1. Introduction 

The task of solving the huge quantum-mechanical many-body problem involved in the 
consideration of perfect or imperfect solids has been under constant development for 
many years. The density-functional formalism (Hohenberg and Kohn 1964, Kohn and 
Sham 1965) in the local density approximation has been satisfactorily used for the 
description of the ground-state properties of the electron gas (see, for instance, Koelling 
1981, Yin and Cohen 1980, Nielsen and Martin 1985, Cohen 1986, and references 
therein). Today, the ab initio description of thermal properties of matter becomes an 
important issue: ab initio molecular dynamics, liquid state, etc. (Car and Parrinello 1985, 
1988) require accurate and fast solutions of many-body Hamiltonians. The development 
of new, faster algorithms designed specifically to carry out the basic Hamiltonian analysis 
is then of paramount importance. 

For periodic solids, or for other systems treated using a supercell approach, the usual 
self-consistent methods require the generation of aHamiltonian matrix for afew k-points 
in the Brillouin zone and the search for its M lower eigenvalues and associated eigen- 
vectors (accounting for the spin degeneracy, M is half the number of electrons per unit 
cell). These are needed in order to generate the self-consistent electronic charge density. 
The Hamiltonian is expanded in a basis set of size N ,  which differs according to the 
specific approach at hand LMTO, plane-wave basis set, etc). 'The factors which actually 
limit the system complexity (the number of atomsper unit cell for a supercell calculation) 
lie in the computational effort needed to generate and to diagonalise the large-size 
Hamiltonian matrix. These limitations are more rapidly apparent when one deals with 
systems exhibiting strong hard-core potentials. 
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Diagonalisation programs for moderate-size matrices most often use the Choleski- 
Householder (CH) algorithm and scale as N 3  while performing the complete matrix 
decomposition. For large basis sets (like those usually required in the momentum-space 
formalism for high-accuracy treatments) this becomes rapidly prohibitive. By contrast, 
some modern algorithms (Davidson 1975; RMM direct inversion in the iterative subspace 
(DIIS) method described by Wood and Zunger 1985) target only the first M eigenvectors 
and require iterative applications of an N x N matrix to a vector of length N ( N 2  
operations). Since the number of iterations is most often quasi-independent of N we are 
led to an M N 2  scaling. 

For local pseudopotentials used in conjunction with the density-functional formal- 
ism, Car and Parinello (1985) pointed out that the Hamiltonian matrix could multiply a 
vector with less than N 2  operations: a fast Fourier transform (FFT) permits the whole 
operation to be carried out with no more than N log N operations. This was a key-point 
for undertaking molecular dynamics using ab initio inter-atomic potentials (Payne er a1 
1986, 1987, Needels er a1 1987, Allan and Teter 1987, Car and Parinello 1988). In the 
following, we consider applying similar ideas to the diagonalisation of local Hamiltonians 
within the Davidson or DIIS schemes. 

Moreover, the use of norm-conserving pseudopotentials (involving non-local con- 
tributions) should be preferred to obtain quantitative results, but the step towards fast 
use of non-local pseudopotentials does not seem to be completely straightforward. A 
few procedures have been designed to deal with this question (Allan and Teter 1987), 
but to date these procedures have needed some modification in the form of the non- 
local pseudopotential. We propose here two different methods to apply the non-local 
pseudopotential Hamiltonian of the usual form (see the work of Bachelet er a1 (1982) 
for the table of 94-element pseudopotentials) with a rough scaling rate of N4’3 (we 
indicate in § 5 a better way to measure the method’s efficiency). 

Section 2 discusses in detail the background problem. Sections 3 and 4 expose the 
two approaches, which we refer to as ‘direct projection’ and ‘real-space projection’. 
After precise comparison of the CPU times and central memory scalings (9  5), we test the 
convergence and CPU performance in § 6. In the following, R ,  systematically denotes an 
atom position, k is a point of the Brillouin zone, S2 the unit-cell volume, and G a vector 
of the reciprocal lattice. Atomic units are used. 

2. Background 

We first discuss the explicit form of the Hamiltonian we consider in this paper. The 
pseudopotential Hamiltonian (Ihm et a1 1979) is made up of four parts: 

= Hkin + Hps + HHart -t Hxc  (1) 
where Hkin is the kinetic operator; Hps is the pseudopotential operator, which can be 
divided into three parts (Hamann et a1 1979, Kleinman 1980, Bachelet and Schliiter 
1982), the local, the non-local and the spin-orbit pseudopotential operators (Hi,,, H,,, 
H S J ;  HHart is the electrostatic Hartree operator; and H,, is the exchange-correlation 
potential operator (taken here for facility in the local density approximation; other 
approximations are also tractable (Perdew 1986, Perdew and Yue 1986)). 

For our purpose, we can consider three groups of terms: (i) Hkin; (ii) H,,,, IfHart, H,,; 
and (iii) Hni, Hs0. The kinetic operator is diagonal in reciprocal space. H,,,, HHart and 
H,, are diagonal in direct space, and together they form a total local potential, call it 
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V(r). Hnl and H,, are non-diagonal in each of the previous spaces, but have the special 
form of a sum of projectors, and act only locally around each atom. One writes for H,, 

where V,(r) has spherical symmetry and is short-range. The notation <l/ denotes pro- 
jector on the 1 angular moment. For most atoms, only f = 0, 1, 2 need be considered. 
Some heavy atoms also need to include I = 3.  For H,, one writes 

Forgetting the slight complication introduced by the electron spin, this term is similar to 
the H,, term and can be treated along the same lines (Hybertsen and Louie 1986, Gonze 
et a1 1988). On the other hand, spin-orbit terms can be neglected for most elements. 

Traditionally, the self-consistent approach to the electronic relaxation follows three 
steps leading to the electron density: (i) define a set of k-points in the Brillouin zone and 
construct the associated Hamiltonians, using the appropriate basis set; (ii) diagonalise 
the Hamiltonians and obtain the first M eigenvectors for each k-point; (iii) sum up the 
partial charge densities associated with all eigenvectors to obtain the total charge density. 
Using an N-plane-wave basis set ') (Ihm et a1 1979), with N,, atoms in the unit 
cell, one obtains the N x Nmatrix between G and G' for one k-point: (i) $(k + G)26GG8 
for Hkln  in Noperations; (ii) V(  G - G') in N 2  operations (V( G ) )  is the Fourier transform 
of V(r) ,  evaluated for lG1 < 2G,,,); (iii) HZ!c,G8 for H,, in N,,N2 operations. The last 
part is the computation bottleneck. The storage of the Hermitian matrix requires N 2  real 
locations, The diagonalisation, using the Choleski-Householder algorithm, scales as 
N3 and becomes rapidly untractable for large basis sets (see 9 6). Amongst the modern 
algorithms for which the principal step scales as M N 2 ,  we will consider the DIIS method, 
although the Davidson (1975) method is equally appropriate. 

In order to obtain one eigenvector using the DIIS method, NI, iterations must be 
carried out, involving mainly a matrix-by-vector multiplication (N2 operations). As the 
number of iterations is practically independent of Nand M (the number of eigenvectors 
sought), we obtain an M N 2  scaling. This step is usually the most time-consuming. The 
times required for the matrix generation and subsequent DIIS diagonalisations are of the 
same order of magnitude and both scale together (because the number of atoms and 
electrons are closely correlated). 

In the case of local pseudopotentials, the DIIS scheme can be considerably accelerated 
by the use of a fast Fourier transform (FFT) technique for the matrix-vector multi- 
plication. The key idea is the merging of the generation and diagonalisation steps. Hkln, 
being diagonal in the momentum-space representation, can be applied very fast to a 
vector Q, in reciprocal space. For the local potential, one can use a backward FFT to 
transform Q, in the direct space, where the potential is diagonal, apply the local potential, 
and return to reciprocal space by a forward FFT. If we consider a mesh of NFFT points in 
direct space, we can apply V(r) to a discrete wavefunction in NFFT operations. The mesh 
can be refined to increase accuracy. In this way, the application of H becomes an N log N 
operation (instead of N 2 ) ,  which makes it as efficient as previous methods for basis sets 
of the order 200-300 plane waves, and much more efficient for larger sets. Another 
advantage is that no N 2  storage is needed, since storing the real-space potential only 
needs approximately 64N real locations. 

The FFT approach to the Hamiltonian matrix-vector multiplication has been intro- 
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duced by Car and Parinello in the context of simulated annealing molecular dynamics 
(Car and Parinello 1985). As discussed above, the idea is also implementable for band- 
structure calculations requiring very large basis sets. However, the quantitative use of 
pseudopotentials (norm-conserving pseudopotentials, see Hamann et a1 1979) implies 
the use of a non-local part Hnl. Then, in order to be useful in practical applications, a 
fast procedure must be found for non-local Hamiltonians. This is considered in the next 
sections, where we discuss two different approaches, the direct projection and the real- 
space projection methods, both relying on the fact that il)(l~ is a projector: it transforms 
q k ( G )  (or qk(r ) )  into an expansion of the form Zlmfim(r)Ylm(8, g;), where only a few I ,  m 
values are needed (up to I = 3, which means at most 16 termsfim(r)). 

3. Direct projection method 

For simplicity, let us consider only one atom, centred at the origin. We will use spherical 
coordinates 8 ,  q ,  r with their usual meaning, and denote the vectors k + G as K and 
k + G ' a s K ' .  

We start from the plane-wave expansion of the crytal wavefunction, 

and expand it in spherical waves, using the identity 

where x is the angle between K and r. In this representation, the non-local matrix 
element ViGGJ associated with the angular momentum I ,  expressing transitions between 
states of wavevectors k + G and k + G ' ,  is given explicitly by Ihm et a1 (1979) as 

Here cos y = K * K'/IK/ IK'I. If we now apply this non-local part of the Hamiltonian to 
some vector q(G')  we get 

4n 
V'qk(G)  = - 1 V&)j ! (W(Z G' (21 + ~ ) v ~ ( G ' ) / I ( K ' ~ ) P I ( c o s  y ) ) r 2  dr .  (7) 

Q o  

In contrast with the case of a local potential, the FFT approach is of no use here 
essentially because the summation over G' does not take the form of a convolution 
product. However, if we expand the function j,(K'r) into a Taylor series (truncated for 
powers above nmax) 

"max 

j / ( K ' r )  = jlr,K'"r" 
n = O  

the non-local pseudopotential becomes 'separable'-in the sense recently introduced by 
Allan and Teter (1987). Using the notation 

1 "  
C?(K)  = 31 V,(r)j,(Kr)r"+2 d r  

0 
(9) 
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and expanding the Legendre polynomials according to the addition theorem of spherical 
harmonics we are led to the final result 

The advantage of this formulation lies in the fact that the G' summation enclosed 
in brackets, denoted Bnlm, need be performed only once, for a given wavefunction, 
independently of the vector G considered. 

The potential V/(Y)  is usually given either in an analytical form, or tabulated for some 
set of r values. The last case gives no problem of evaluation, and for a potential of the 
form 

~ ( r )  = (pi + a i r 2 )  exp(-air2> (11) 
i 

the result of the calculation of Cy(K)  is given in Appendix 1. Considering the algorithm 
construction (with more than one atom located at the origin), the direct projection 
method can be decomposed in three steps: (i) For each k and each atom, before starting 
the diagonalisation procedure, evaluate the C;(K)  and structure factors exp(iK' . R r ) ,  
The Cy(K) ,  as a representation of the pseudopotential, are atom-dependent, but not 
'location-dependent'. For the same atoms located in different places, it need not be 
evaluated twice and stored. (ii) At each application of the Hamiltonian and for each 
atom, evaluate the Bnlm by summation on the G' .  (iii) At each application of the 
Hamiltonian and for each atom, generate the V'qk(G),  using the Bnlm and C ; ( K ) ,  by 
summation on the Taylor indices. The two last steps scale as N,,Nn,,,. 

The number of Taylor coefficients need not be large, because after the projection, 
fim(r) will be multiplied by Vl(r) which is short-ranged; moreover, for even (odd) 1, odd 
(even) power coefficients vanish. Using dimensional arguments, it can be seen that if 
the size of the basis set which describes q ( r )  is enlarged by a factor F ,  the set of Taylor 
coefficients which describes f ( v )  must be increased by only a factor F1I3, in order to 
maintain a constant accuracy (see also Appendix 2). 

4. Real-space projection method 

In this method, the set of B,, will be found using a polynomial interpolation of the 
wavefunction in real space (obtained by a fast Fourier transform, also needed for the 
local part of the Hamiltonian) and, similarly, the set of V'qk(r) is determined in real 
space and transformed using the reverse FFT. Care must be taken to keep control of the 
truncation error due to real-space discretisation and interpolation procedure. This will 
be discussed in 0 6. 

The coefficients are extracted from the following identity: 

In order to evaluate the wavefunction polar projections, a uniform set of Q points (part 
or, if necessary, a periodic extension of the FFT grid) is chosen around each atom. 
A three-dimensional polynomial interpolation for qk(r) is then fitted to the known 
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wavefunction values. In terms of the FFT basis vectors el, e2, e3, the relevant mesh points 
are denoted rp = ael + be2 + cr,, the origin being attached to the nearby atomic site. 

We consider the three-dimensional polynomial interpolation which will be written 
as qk(r)  = &zjiCka@'bick. In order to obtain a Q4I3 scaling of this calculation step, we 
can treat each dimension in a recursive way: 

For each step, the one-dimensional interpolation can easily be performed using a stan- 
dard least-square procedure, or a direct inversion of the (a ' ) ,  (b') ,  (c') matrices. The 
convergence of the interpolating sequences on larger and larger sets of points is found 
to be appropriate for all practical purposes. 

a simple projection of the expression a'b'ck on the 1 angular momen- 
tum space provides the coefficients Bnlm. This calculation proceeds in such a way that 
the transformation coefficients, for each angular function, 

From these 

(14) 

are first obtained in enmax operations using a recursive approach (see Appendix 3), and 
are then fed into the identity 

This last step scales linearly with Q, as the number of angular functions is kept constant. 
Using the set of Bnlm, the application of the non-local potential operator to the 

wavefunction can be performed on a restricted zone around the atom, which by con- 
venience, is chosen to be the Q points zone: 

The remarkable fact about this procedure is that it can be split into two distinct stages, 
the first one being independent of the explicit representation of the wavefunction, which 
leads to a considerable saving in computational effort. This first stage involves (i) the 
choice of an appropriate set of Q points for each atom, (ii) the evaluation of the non- 
local potential Vl(r) and of the phase factor exp(ik * r )  on this mesh, (iii) the construction 
of transformation matrices (equation (13)) and (iv) the generation of the T g  set. 
Following this, the Hamiltonian can be applied to the real-space wavefunction with 
minimal computational effort: (v) evaluation of the a.. using the FFT values of the 
function in real space, (vi) evaluation of the Bnlm and (vii) generation of the Viqk(r ) ,  
using the Bnlm and Vl(r),  by direct summation. Step (v) scales as NatQ4I3 while steps (vi) 
and (vii) both scale as NatQn,?,(ZX. All other steps are significantly less demanding. 

I l k .  

5. Theoretical evaluation of each algorithm's performance 

As can be noted, CPU time and memory scaling both grow with the number of plane 
waves N, the number of atoms Nat, the number of electrons M ,  the number of FFT points 
NFm, the maximum polynomial exponent n,,,, and the number of points Q around each 
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atom. The k-point sampling scaling is also an important parameter, but can be considered 
separately, as all methods are similarly affected. To compare the five methods (Choleski- 
Householder (CH) , DIIS) , direct projection, real-space projection, and local potentials 
using FFT), we need some normalisation. We express the scaling of all relevant par- 
ameters as a function of only two variables: the ‘volume scaling V’ and the ‘precision 
scaling P’ . 

By ‘precision scaling’, we mean an increase of the number of plane waves by a factor 
P ,  keeping constant the number of electrons, the number of atoms and the volume of 
the system. In the CH and RMM methods, increasing the number of plane waves leads to 
an accuracy improvement for the total energy and the band structure. To ensure a 
comparable accuracy with other methods one needs to improve NFm by a factor P ,  and 
nmax by a factor (see Appendix 2). The number of mesh points Q kept to represent 
the potential at each atomic site varies with the analytical form given to the pseudo- 
potential, a Gaussian representation leading to a P3I2 dependence (a careful discussion 
of this point can be found in Appendix 4). 

By ‘volume scaling’, we mean an increase of the unit-cell volume by a factor V ,  
keeping constant the kinetic energy cut-off, the average electronic charge density and 
the average ‘atomic density’. For example, defining a frozen-phonon supercell needs a 
V scaling of the original unit cell. In such an operation N ,  Nat, M and NFFr are all 
multiplied by a factor V ,  while Q and n,,, are unchanged, as they only depend on the 
range of the pseudopotentials. 

Figure 1 shows the effect of typical P = 4 and V = 4 scalings of a square planar lattice 
on real and reciprocal spaces. 

We now turn to the scaling evaluation of the algorithms with respect to CPU and 
memory scaling. The bottleneck of both the CH and RMM schemes is the diagonalisation 
step. TheN3 algorithm leads to a V 3 P 3  scalingin the CH approach, and the M N 2  algorithm 

Real space 

Real space 

Reciprocal space 

Reciprocal space / (volume V 4 scaling scaling1 

Real space 

P=4scaling 
(precision scding] 

\ Figurel. Representationof V = 4and P = 4scalings, 
on a square planar lattice, in both real space and 
reciprocal space. V = 4 scaling causes the increase of 
size of the unit cell. but without modifying the density 
of real-space Fmpoints, while in reciprocal space, the 
size of the zone is kept constant, and the density of 
G-points is increased. For P = 4 scaling, the effects 
on real and reciprocal spaces are interchanged. 
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leads to a V3P2 scaling characteristic of the RMM procedure. Both require that the full 
N2 matrices be stored, which accounts for a V2P2 scaling. With local potentials, the 
combination of the DIIS approach with a fast Fourier treatment of the matrix multi- 
plication leads to a CPU time proportional to M N  log N ,  which means a V'P log(VP) 
scaling. Here, about 64N storage locations are needed, leading to an interesting VP 
scaling. The treatment of a non-local contribution to the pseudopotential involves an 
MN,,Nn,,, step, thus a V3Pl3 scaling for the direct projection method (respectively, an 
MN,,Q4l3 step and a v P 2  scaling for the real-space projection method). The most 
stringent storage constraint for the direct projection method arises from the necessity of 
keeping available the whole set of Cj'(K) coefficients: the Nn,,,/2 locations required for 
each atomic species and each angular momentum state gives a V2P413 scaling rule, to be 
compared to the VP3'2 scaling of the memory requirement motivated by the discrete 
representation of real-space pseudopotential components V,(r) in the real-space pro- 
jection approach. In the case of large unit cells containing the same atomic species many 
times (like in primitive cells associated with superstructures used for the description 
of superlattices, frozen phonons, or non-periodic systems approached by a supercell 
technique), the scaling rule in the direct projection method can be reduced to an even 
more favourable Vp4'3 memory scaling, as the set of C;(K)  are identical for the same 
atoms. However, the volume scaling is then dominated by the VPmemory usage needed 
to store the irreducible number of structure factors. Table 1 summarises the various 
scaling rules found through the present analysis. 

The above discussion justifies the need for two distinct methods in order to account 
properly for the non-local character of the pseudopotentials in fast diagonalisation 
procedure. Basically, one can distinguish the case where a small unit cell must be treated 
with high accuracy (i.e. when rather hard-core pseudopotentials are present which 
require the use of an especially large basis set) from the case where the overall limitation 
comes from the use of very large unit cells. A low P-scaling is needed for the first class 
of problems, while a low V-scaling is beneficial to the second. From this argument, it 
is clear that the direct projection method permits better speed and lower memory 
requirements for the high-accuracy treatment of small-unit-cell crystal structures, while 
the real-space method turns out to be the more advantageous for large-volume unit cells. 
The gain in this case is due to the localised character of the non-local part of the 
pseudopotentials. 

This correspondence between direct projection method, suitable for high-accuracy 
applications, and real-space projection method, suitable for high-volume applications, 
also exists for other forms of non-local pseudopotentials, and is then somewhat simpler 
(e.g. the Kleinmann-Bylander pseudopotential, used by Allan and Teter (1987)). Work 
is in progress in this direction, and will be the subject of a future article. 

Table 1. Comparison of leading CPU and memory scaling, for the different methods con- 
sidered in this paper. For the direct method, with only a few different atomic species per unit 
cell, the leading central memory scaling is VP"3 + V'P (see text). 

CH DIIS Direct Real space Local potentials 
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6. Tests 

Tests have been carried out for the well known silicon band structure, total energy and 
lattice geometry. Many studies, including those of Holzschuh (1983) have extensively 
discussed the influence of cut-off, pseudopotential and exchange-correlation potential 
on the calculated ground-state properties. 

We used the momentum-space formalism of Ihm et a1 (1979), with Ceperley-Alder 
form of exchange-correlation functional (Ceperley and Alder 1980), as parametrised 
by Perdew and Zunger (1981), and an ionic pseudopotential taken from the table 
published by Bachelet et aZ(l982). Integration in the Brillouin zone was performed using 
a 10-special-point set (Monkhorst and Pack 1976). The self-consistency convergence 
was considered to be reached when the total energy improvement was found to be 
smaller than Ryd/atom. The experimental lattice parameter a. = 5.43 A was used 
for the total energy and band-width calculations. 

The use of 1 = 0, 1, 2 non-local potentials involves the estimation of nine sets of 
coefficients B,/, needed to apply both projection methods. Instead of using the local 
‘core potential’ provided by the Bachelet tables, we found it more advantageous to use 
the 1 = 2 potential as the local part (we call it d potential), which leaves only four sets of 
B,/, to be determined. Table 2 shows a comparison between the results obtained when 
using d and core potentials as local contributions. The differences have no significance, 
in view of the convergence reached. 

The first set of tests concern the direct projection method. Table 3 describes a 
convergence test which involves an increasing number n,,, of terms retained in the 
Taylor expansion of the wavefunction. The convergence shown when increasing nmax is 
found to be appropriate, and, as expected, the quasi-doubling of the plane-wave set size 
only requires a moderate change of n,,,,,. 

Figure 2 compares the typical CPU time needed for one diagonalisation. CH and RMM 
methods have N 3  and N 2  dependence, while the direct projection method (with both d 
or core potential) gives a stepped increase associated with the use of a variable-size fast 
Fourier transform (see Appendix 5 ) .  

The cross-over between RMM and direct projection methods happens at about 400 

Table 2. Convergence of total energy, band width and equilibrium lattice constant of silicon, 
upon increase of the size N of the plane-wave basis set. The d and core potential results 
appear to agree within the uncertainty related to the convergence actually reached. Exper- 
imental values from Yin and Cohen (1980) and Hybertsen and Louie (1985), where other 
LDA values can also be found. 

Total energy Valence band width Lattice constant 
(Ryd/atom) ( e v )  (A) 

N d core d core d core 

59 -7.78387 -7.78397 11.19884 11.19277 5.1279 5.1292 
169 -7.91260 -7.91249 11.86748 11.86743 5.2674 5.2672 
229 -7.92908 -7.92895 11.91840 11.91823 5.3108 5.3108 
307 -7.93827 -7.93816 11.93064 11.93061 5.3474 5.3476 
411 -7.94111 -7.94101 11.92261 11.92253 5.3634 5.3637 
531 -7.94212 -7.94202 11.91048 11.91045 5.3653 5.3656 
Expt -7.919 12.5 & 0.6 5.43 
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Table 3. Convergence of total energy and valance band width of silicon with respect to nmdx, 
the number of terms retained in the Taylor expansion of the wavefunction. The cases of d 
and core potentials are considered, for 229 and 411 plane waves. Only differences with 
respect to the converged value are given, without sign. 

229 plane waves 411 plane waves 

nln‘lx d core d core 

Energy 20 
(Ryd/atom) 24 

28 
32 
36 
40 
Converged 

Band width 20 
( e v )  24 

28 
32 
Converged 

3 x 10-4 
6 X 

2 x 10-6 
c10-6 

-7.929081 

5 x 10-5 
<2 x 10-5 

2 x 10-3 

11.91840 

1 x 
2 x 10-5 
2 x 10-6 

<10-6 

-7.928951 

1 x 10-1 
2 x 

<2 x 10-5 

11.91823 

9 x 10-3 
1 x 10-3 
1 x 
1 x 10-i 
1 x 10-6 

<10-h 
-7.941115 

1 x lo-’ 
4 x 10-4 
8 X 

2 x 10-5 
11.92261 

1 x 

1 x 10-5 

5 x 10-4 
9 x 10-i 

1 x 10-6 

-7.941015 

1 x lo-’ 
8 X 10-‘ 
3 x 10-5 

<2 x 10-5 
11.92253 

plane waves. As already remarked by Nielsen and Martin (1985), about 500 plane waves 
are needed in order to produce well converged values of the lattice parameter and elastic 
constants of silicon. For other materials, in particular those involving Mendeleev first- 
row elements or for transition metals, a much larger number of plane waves could be 
necessary (Wentzcovitch and Cohen 1986). 

N 

Figure 2. Representation of the CPU time (average) dependence on N ,  using the different 
methods CH, DIIS and direct space projection, where for the last, both d potential and core 
potential have been used. The test has been performed using an IBM 4381. 
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Table 4. Convergence of total energy and valence band width of silicon with respect to Q, 
the number of real-space points on which the d non-local potential acts, for some values of 
N a n d  NFn. Only differences with respect to the converged value are given, without sign. 

N N,, Q'13 AE (Ryd/atom) Band width (eV) 

229 3456 11 1 x lo-' 9 x 
13 7 x 10-5 3 x 10-5 
15 1 x 10-6 <2 x 10-5 
17 
Converged -7.928950 11.91856 

229 8192 15 
17 
19 
21 
23 
Converged 

411 8192 15 
17 
19 
21 
23 
Converged 

I x 10-3 
1 x 10-4 
1 x 10-5 
1 x 

<10-6 
-7.929079 

1 x 10-3 
1 x 10-4 
9 x 
1 x 10-6 

-7.941 115 

7 x 
2 x 10-5 

<2 x 10-5 

1 1.9 18 42 

7 x 
3 x 10-5 

<2 x 10-5 

11.92264 

The application of the second approach (the real-space projection method) calls for 
some specific remarks. This method requires two more cut-off parameters: the step size 
in the FFT grid, and the extent of the non-local pseudopotential around each atom. Table 
4 describes the typical convergence behaviour of the procedure with respect to the 
number Q of grid points used in the pseudopotential discretisation. 

It is instructive to notice that, with the chosen pseudopotentials, the pseudopotential 
range must be extended beyond the first nearest-neighbour distance. Furthermore, 
reaching a total energy accuracy below the very stringent level of Ryd/atom requires 
a rather fine FFT grid. The V- and P-scaling laws have in this case large proportionality 
coefficients, and this weakens the interest of the method for small systems. This could 
be improved by using another form for the pseudopotential (no more the Gaussian 
fitting of the Bachelet table). For a two-atom cell with 229 plane waves, the ratio of CPU 
time for the real projection method versus DIIS reaches about 5 .  Our approximate scaling 
arguments indicate that the real-space projection method should become competitive 
when more than about 10 atoms are involved. 

7. Conclusions 

We have proposed two different methods which aim at solving the problem of the fast 
diagonalisation of Hamiltonians involving a non-local electron-ion interaction term. 
Those provide an adequate basis for studying the ground-state properties of simple 
crystal structures where hard-core pseudopotentials are not easily avoided, or complex 
crystalline materials with large unit cells. The direct projection method is especially well 
suited to the treatment of non-local hard-core potentials, while the real-space projection 
method applies efficiently to large and complex unit cells. 

We have not yet mentioned the possibility of combining those methods with other 
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theoretical tools sensitive to basis-set convergence. One may think of Hellmann-Feyn- 
man force calculations (Ihm et a1 1979, Yin and Cohen 1982), the stress theorem 
(Nielsen and Martin 1985), or the linear perturbations treatment (Baroni et a1 1987). The 
application of the present ideas to such theoretical treatments seems rather 
straightforward. 
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Appendix 1 

The integrals to be computed are 

Zl,fl(a, K )  = joz exp(-ar2)rn+*jl(Kr) d r  

with n even if 1 even, n odd if 1 odd, and n 
we obtain 

1. Using spherical Bessel function recurrence, 

We now compute 

ZO,m(a, K) = e~p(-ar~)r"+~[sin(Kr)/Kr] d r  

K )  (m  even): 

- - - LL(L)m(-l)m/z 

- - - --(-)m(-1)n1/2-(-) K d K  d K  2 a  e x p ( z )  

exp(-ar2) cos(Kr) d r  
0 

K d K  d K  

1 d  d 1 n - K2 

exp(')Hm+l(x) - K2 

where x = K/2a1i2, and H ,  denotes the Hermite polynomial of order m. Using the 
recurrence properties of Hermite polynomials we finally obtain 
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Appendix 2 

We will show in this appendix that a precision scaling of factor F (increase of the 
maximum norm for plane waves G,,, by a factor PI3) needs only a F'I3 scaling of nmax. 
If we multiply G by a factor a in the expressionjl(Gr), we affect the various terms in its 
r Taylor expansion differently. In order to correct for this change and keep a constant 
accuracy, we need to collect more terms in this expansion. We search the maximum 
coefficient a, by which we may multiply G in the Taylor development ofjl(Gr), if we 
consider not only the nmax first terms, but the m = F1/3nmax first terms. 

We will restrict ourselves, without loss of generality, to the 1 = 0 angular momentum, 
and to a typical term of the form 

T(n) = (Gr)"/(n + l)!. 

nmax is considerably larger than 1 and, as we assume that the development was well 
converged when restricted to the n,,, first terms, we have T(n,,,) = e-b Q 1. Consider 
then the function 

S(a, n)  = (aGr)"/(n + l)!. 

We must show that S ( a ,  m) < S(1, nmax), with a less than F1l3. We use the Stirling 
formula and obtain 

log S(a, m) = m(1og a G r  + 1) - m log m 

neglecting irrelevant supplementary terms. After some simple algebra, the inequality 
becomes 

log a - log(m/n,,,) - (l/nmax - l/m)/? < 0. 

As /3 > 0 and m > n,,,, we may certainly increase a as F1I3, and G,,, as n,,,, without 
loss of precision. 

Appendix 3 

We have defined the coordinates a ,  b,  c with respect to a non-orthonormal basis rp = 
ael + be2 + ce3. The relations with the orthonormal basis e,, ey ,  e, for which rp = 
xe, + yey + ze, are the following: 

el = + e 1 y e y  + el*+?, ex = e x l e l  + e x 2 e 2  + e x 2 e 3  

e2 = e k e x  + e g e y  + e2,eZ 

e 3  = + e 3 y e y  + 

We will now show the method to construct recurrence relations needed to evaluate 
TtZ. We only detail the special case 1 = 0. For the other angular momenta, the con- 
struction will be similar, after some differentiation with respect to a ,  b and/or c. 

or e y  = e y l e l  + ey2e2  + ey3e3 

e ,  = ezlel  + eZ2e2 + e z 3 e 3 .  
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We define first 

X'Ik = jx 1-1 exp[-(x' + y 2  + z2)]a'b!ck dx dy d z  
--s - x  

which can be related to T#i  : 

where the angular integration is performed on the radius-1 sphere. r is the usual gamma 
function. 

xllk = j-:j-:j-: exp[-(x2 + y2 + z2)]a ' - 'b!ck (xe,, + ye,, + zeZl) dx dy d z  

= e,, jX jx j-1 -6 exp[-(x2 + y 2  + z 2 ) ]  - (a ' - 'b Ick)  dx dy d z  

XIk can be integrated by parts on a (or b or c): 

d 
dx 

-6 exp[-(x2 + y 2  + z ' )]  - (a'b'- 'ck) dx dy dz 

--z - x  

d + eyl j= jK 
--r --cc dY 

d 
d z  

-t  exp[-(x' + y2 + z ' ) ]  - (a 'b!ck- ' )  dx dy d z  
- x  --?c 

For cubic systems, some e-coefficients vanish. 

Appendix 4 

If the non-local pseudopotential is short-ranged in real space (V,(r) = (0) for r > rmaX), 
the number of FFT points included in this zone scales with P ,  and we obtain the simple 
P-scaling of Q. This is not true for another pseudopotential form. It is easy to show that 
a Gaussian pseudopotential (or a combination of Gaussians), V,(r) = a exp(-pr2), for 
example, leads to P3I2 scaling. As nmaX increases as P113, the maximum of the function 
fV,(r)  = r"aexp(-/3r2), situated in r = (nmax/2p)'I2, also moves, and enlarges the zone 
in which the pseudopotential action has some importance. The volume of this zone scales 
as P1/*, leading to a P3/' scaling in conjunction with the FFT density of point scaling. 

Appendix 5. Fourier transform 

We shall refer to the book of Brigham (1974), where extensive discussion of Fourier 
transform as well as fast Fourier transform algorithms can be found. In this appendix, 
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only some technical points relevant to the application of the FFT algorithm to our problem 
will be mentioned. 

The three-dimensional FFT can be reduced to a nested one-dimensional FFT, using 
the following recursive scheme: 

The numer of points could be different for each dimension, but in the case of crystals 
with cubic symmetry, it is advisable to use a cubic discretisation mesh. The G vectors 
set, which is generally obtainedfrom a spherical cut-off kinetic energy, must be contained 
in this cubic grid of FFT points. Furthermore, as a consequence of the Nyquist sampling 
theorem (Brigham 1974, p 83) ,  the FFT has to be computed with a set of points of double 
density in each of the dimensions. Thus, the number of FFT points is at least about 16 
times the number of G vectors. 

The second point concerns the size of each one-dimensional FFT. If we consider only 
radix-2 FFT, we obtain three-dimensional grids with 8,64,512,4096,32768, . . . points. 
As the step-like behaviour of those grids leads to a very weak flexibility in the choice of 
the step size, it is recommended to allow for the use of radix of the form 3 X 2". This can 
be done by using the following decomposition: 

which leads to three radix-2 FFT. To handle three-dimensional FFT on FCC lattices 
efficiently, we treat separately odd and even coordinate G points, and generate the real- 
space functions in the parallelepipedic volume represented in figure A l .  

0 

I 
I 
I 
I 
I 
I 
I , 
t 0 

Figure A l .  The real-space volume 
for FCC lattice on which the fast 
Fourier transform is performed. 
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Applying those considerations to the FFC diamond lattice, we obtain the natural 
grids: 

2 x 83 = 1024 points, for 59 (or less) G vectors sets 
2 x E3 = 3456 points, for 229 (or less) G vectors sets 
2 x 163 = 8192 points, for 531 (or less) G vectors sets 
2 x 243 = 27648 points, for about 1700 (or less) G vectors sets. 

Note added in proof. Shortly after the submission of this paper, a complete discussion of the local potential 
FFT method (Martins and Cohen 1988) was published. 
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